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Abstract

In order to investigate the non-linear asymmetric vibrations of a clamped circular plate on an elastic
foundation, the primary resonances of a plate with an internal resonance, in which the natural frequencies
of two asymmetric modes are commensurable are considered. The response is expressed as an expansion in
terms of the linear, free oscillation modes, and its amplitude is considered to be small but finite. The method
of multiple scales is used to reduce the non-linear governing equations to a system of autonomous ordinary
differential equations for amplitude and phase variables. For a numerical example the case of internal
resonance (a commensurable relationship between natural frequencies), w3, ~3w;, where the first subscript
refers to the number of nodal diameters and the second subscript the number of nodal circles including
boundary is considered. When the frequency of excitation is near w;;, there exist at most five stable steady-
state responses. Four of them are superpositions of traveling wave components and one is a superposition
of standing wave components. The result shows the interaction between modes corresponding to w;; and
w3, by showing non-vanishing amplitudes of the mode not directly excited. When the frequency of
excitation is near ws,, similarly the interaction between modes is shown to exist. All of the responses with
non-vanishing amplitudes of modes excited indirectly, however, turn out to be unstable, which is a peculiar
phenomenon.
© 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Among many studies [1-5] dealing with non-linear modal interactions of vibrations of circular
plates, the work done by Sridhar et al. [2] may be said to be general in the sense that it includes
asymmetric vibrations as well as symmetric vibrations, and it includes all of the natural modes. In
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Fig. 1. A schematic diagram of a clamped circular plate on an elastic foundation.

this work they derived solvability conditions for modal interactions of clamped circular plates.
Recently, Yeo and Lee [6] found that these conditions were misderived, and then corrected the
conditions. They observed that in the absence of internal resonance, the steady-state response can
have not only the form of a standing wave but also the form of a traveling wave. This observation
is a remarkable contrast to Sridhar et al. [2], in which the steady-state response can only have the
form of a standing wave.

In order to investigate modal interactions of circular plates with internal resonance, a circular
plate on an elastic foundation shown in Fig. 1 is considered. In this study, the elastic foundation is
considered to get a varied natural characteristic, which generates a desired commensurable
relation between natural frequencies. Circular plates on an elastic foundation are also known to
model some heat exchangers [7]. The dynamic analogue of von Karman equations is used to study
a primary resonance of the plate. The method of multiple scales is used to reduce the non-linear
governing equations to a system of autonomous ordinary differential equations for amplitude and
phase variables. The equilibrium solutions of the system and their stability are examined.

2. Equations of motion and steady-state responses

The equations governing the free, undamped oscillations of non-uniform circular plates
were derived by Efstathiades [8]. These equations are simplified to fit the special case of
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uniform plates, and damping and forcing terms are added. Then the non-dimensionalized
equations of motion of a circular plate with an elastic foundation shown in Fig. 1 can be given as
follows [2.9]:

2
%* (V4+K>W=8[L(W,F)2caa—f +p'(r,0, z)], (1)
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where ¢ = 12(1 — v*)i?/ R?, ¢ is the damping coefficient, p” is the forcing function, K is the stiffness

of the foundation, v is Poisson’s ratio, / is the thickness, R is the radius, w is the deflection of the
middle surface, F is the force function which satisfies the in-plane equilibrium conditions (in-plane

inertia is neglected), and
2 1o 1Y\
Vis ([=+-=+=—). 4
<8r2 + ror + r? 502> (4)
The boundary conditions are developed for plates which are clamped along a circular edge. For
all ¢t and 6,

0
w=0, —W:0 at r =1, (5a,b)
or
O°F 10F 10*F
— V| -—+=—5 =0 atr=1 6
or? v<r or 7 802) wr==L (62)

Cr el 1oF 24y OF  34vOF_ o, (6b)
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In addition, it is necessary to require the solution to be bounded at r = 0.
The forcing function p* is considered as follows:

0 )
Z P0m¢0m +2 Z Pnn1¢n;n COS(I’ZQ + Tnm)

m=1 nm=1

P (r,0,1) = cos At, (7)

where the linear symmetric vibration modes ¢,,,(r) corresponding to the natural frequencies w,,
(see appendix). In these expressions, the first subscript # refers to the number of nodal diameters
and the second subscript m refers to the number of nodal circles including boundary. And 4 is the
excitation frequency.
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To obtain the first order approximate solution of Egs. (1)—(6), the method of multiple scales is
used. w and F are expanded as follows:

w(r,0,58) = > &wi(r,0,To, T, ..., 8)
j=0
w .
F(r,0,;6) =Y &F(r,0,To, Ty, ...), ©)
Jj=0

where T,, = &"t.
Following Sridhar et al. [2], the first order solution is as follows:

0 0
i 9 i an R —i an
Wo = E Z ¢nm(r)unm(TOa T], ~--)eln 5 Upm = Anmelw 0 + Bnme 1 0: (10)

n=—o0 m=1

where the w,, are linear natural frequencies, the ¢,,,(r) are linear symmetric vibration modes (see
appendix), and the responses 4,,, and B,,,, are complex functions of the all 7} for k>1.

For a circular plate without an elastic foundation—i.e. the case of K = 0, Yeo and Lee [6] had
corrected the solvability conditions for the responses derived by Sridhar et al. [2]. Since the value
of K does not change the solvability conditions at all, Yeo and Lee [6] gives the conditions as
follows:

— 2iwp(D1 A + cadi) + Akl{ S Vi AunAun + BunBum) — Vklk/Akl/_lkl}

n=—o0 m=1

0]
+2(1 - 5ko)Bk1{Z Ptk A gem Biem — fk/szkJBkz} +NA+RE =0, (11a)

m=1

0 0
2iwk/(DlBkl + Clekl) + Bkl{ Z Z Vklnm(AnmAnm + Bntnm) - ykllelekl}

n=—0o0 m=1

o0
+2(1 - 5k0)1‘_1k1{z rcttom Ak Biem — ”?kzszszkz} +NE+RE =0, (11b)

m=1

where Dy = 0/0T), &k are Kronecker delta, Rfl’B are terms due to internal resonances, if any,
N, ;(4],3 are terms due to the external excitation, if any, and y;;,,, and Jxx, are constants given in the
appendix.

In order to consider the internal resonance condition wyy ~3wep (N = 3C) and the external
resonance condition Axwgy (GH = CD or NM), the detuning parameters, o; and o;, are
introduced as follows:

oyy = 3wcp + 601, A= wgH + €0s. (12,13)
In this case

Ry = OnmAipe T RE = OnyBlpe™ ™, (14a,b)

Repy = OcpAgpAnue ™™,  RE, = OcpBgpByue '™, (l4c,d)



W.K. Lee, M.H. Yeo | Journal of Sound and Vibration 263 (2003) 1017—-1030

RYP =0 for ki#CD,NM,
NgH — %PGHei(Ule +TGH)’ NgH — %PGHe—i(Ule—TGH)’
NP =0 for ki#GH,

where the Oy and Qc¢p are constants given in the appendix. Next let

e l ia}’ll?l J— 1 1
Anm - janme 5 Bnm - jbnme 'Bnm,

1021

(14e)
(15a,b)

(15¢)

(16a,b)

where the a,,, by, % and B, are real functions of 7. Substituting Egs. (14)—(16) into (11) and

separating the result into real and imaginary parts, gives
wr(dy + cxa) — 1 — 8x0)briSyy — YkcdipQcpagpany sin fig

1 3 N 1 .
+ gOkn O Onmrap Sin fig — 30k60m Per sin piGy = 0,

wi(Bly + crbrr) + X1 — 8x0)ansy, — $dkcdip Qepbepbim sin fip

+ éSkNSIMQNMbSCD sin fig — %5kG61HPGH sin ,ubGH =0,

/ 1 2 1 a 1 2 ~
k1% + ki (ki — Vi) + 31 — Sk0)briSy; + §9kcOip Ocpdcpann €os fig

+ 18kn 81 Onmagp cos fLa + 38k68 Pon cos uy = 0,

rtbriBly + $bri(skr — Vi) + 31 — Sko)awiss, + 1kcdipQcpbepbnm cos fip
+ 18kn 81 Onarblp €0 fig + L8681 P cos iy = 0,

where

0 o0

2 2
Skl = Z Vklnm(anm + bnm)’
1

n=—0o0 m=
©
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m=1
0
S'IL;/ = Z(l - 6ml));klkmakmbkm COS(OCkm - ﬂkm — 0 + ﬁk[)a
m=1

b
Uop = 02T + Tou — %GH, e = 02T — 6 — Bou,

fiu = 01Ty — 3ocp + o, fg=01T1 —3Bcp + Byu-

(17a)

(17b)

(17¢)

(17d)

(18a)

(18b)

(18¢)

(19a,b)

(19c¢,d)

Each equilibrium solution of the system of autonomous ordinary differential equations to be
obtained from system (17) corresponds to a steady-state response. The steady-state response to

the first order approximation is given as follows:

w = wep + wyy + O(e),

(20)
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where
wep = 06cdupP eptacp cos(it — uep + CO + tcp)

+ bep cos(it — by — CO — tep)}

A a i
+ 5GN5HM¢CD{CICD cos <§t - 'LLN?M — '%14— Cco +TNTM>

Ao 1y s TNM
—t— 2 - — - C0—- — 21
+bcp cos(3l 3 3 Cco 3 )¢ (21)

W = 86edup Py Lanar cos(3At — 3ulp + fig + NO + 31cp)
+ by cos(34t — 3uly + fip — NO — 3tcp)}
+ OGNOHM P Nartanm cos(At — Sy + NO + tyu)
+ byw OS2 — iy — NO = Ty} (22)

Each of the wep and wyyy is the superposition of two traveling wave components. If acp = bep,
one obtains ayy = bym, pép = ,uléD, W = Hlva and fiy = fig. Then Egs. (21) and (22) can be
reduced as follows:

Wep = 25Gc6HD(j)CDaCD COS(/IZ — ,u"CD)cos(CQ + TCD)

Ao Wy A TNM
+ 286N0uM P cpacp cOs <3t -3 T3 cos(CB—i—?), (23)

WNM = ZSGc8HDqZ')NMaNM cos(34t — 3/1%1) + fig)cos(NO + 3t¢p)
=+ 26GN6HM¢NMaNM COS(}Lt — ,MC;VM)COS(NQ + TNM)- (24)

Now each of the wep and wyy, becomes a superposition of two standing wave components.

3. Numerical example

For a numerical example the case of K = 1032, which gives natural frequencies w;; = 38.52
and w3 = 115.58 is considered. Then there is an internal resonance condition ws~ 3w
and an internal detuning parameter &o; = 0.007412. Pursuing the internal resonance
condition wyy ~3wcp (N =3C), gives the relations C=1, D=1, N=3 and M =2.
Consider two primary resonance cases, Axw;; (G=1 and H=1) and lrws (G=3
and H =2). In Figs. 2-7 the amplitudes a;;, b;;, az» and b3, are plotted as functions of
detuning parameter &g, = 6, when {v, &, ec, Ty, 132}2{%, 0.001067, 0.01, 0.0, 0.0}. Solid
and dotted lines denote, respectively, stable and unstable responses. The abbreviations SS, US, ST
and UT denote, respectively, stable standing, unstable standing, stable traveling and unstable
traveling wave components. Numerical results were verified by using a software package AUTO
[10], which can perform bifurcation analysis and continuation of solutions for ordinary
differential equations.
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Fig. 2. Variations of the amplitudes with detuning parameter 6, when A~ w; and ¢P; = 4. , stable; - - -, unstable.

In the case of Axw;; (G=1 and H = 1), Fig. 2(a) and its partial enlargements, Fig. 3 show
that the response curve corresponding to standing waves is similar to the response curve of the
Duffing oscillator, except that the upper branch changes its stability at pitchfork bifurcation
points, ¢,4(0.0219) and ¢5(0.2144). Fig. 2(b) and its partial enlargements, Fig. 4 shows that the
mode corresponding to ws; is excited indirectly through the non-linear interaction. If there were
no non-linear interaction, a3, and b3, would be zero. Figs. 3 and 4 show that traveling wave
components change their stability at Hopf bifurcation points, ¢p(0.0678) and ¢£(0.2099). These
figures show that the response curves have four saddle-node bifurcation points, 65(0.0512),
6¢(0.0665), ¢£(0.0755) and 64(0.2162). When 6¢<d><dp, there exist five stable steady-state
responses. Those are from SS,, ST;, ST,, ST3 and ST,. Since the overall deflection of the plate is a
superposition of two wave components, respectively, due to modes excited directly (w;;) and
indirectly (wj3), it will be one of five superpositions (one superposition of standing wave
components and four superpositions of traveling wave components). The initial condition
determines which deflection is to be realized.

In the case of Axws, (G =3 and H = 2), Fig. 5 and its partial enlargements, Fig. 6 show
responses of the directly excited mode, with response of ¢;; = 0 and b;; = 0, which means no
interaction between two modes. The responses are similar with those [6] in the absence of internal
resonance. The enlargements were not plotted in the previous work [6], though. The response
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Fig. 3. Variations of the amplitudes with detuning parameter 6, when A~ w; and ¢P; = 4. , stable; - - -, unstable.

Enlargements of the Z1, Z2 and Z3 in Fig. 2(a).

curves in Figs. 5 and 6 are analogous to the response curves in Figs. 2(a) and 3. Fig. 7 shows
that there exist additional steady-state responses, all of which turn out to be unstable. In
other words, no stable response with non-vanishing amplitudes of a mode excited indirectly
is found. It is believed that modal interaction via unstable responses is a peculiar phenomenon.
Non-existence of stable steady-state responses may imply the existence of quasi-periodic
response or chaos. Exploring the entity of unstable responses in Fig. 7, however, is beyond the
scope of this work.
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Enlargements of the Z4, Z5 and Z6 in Fig. 2(b).

4. Conclusions

An analysis for non-linear interaction of asymmetric vibrations of a circular plate on an elastic
foundation has been presented. Two primary resonance cases with internal resonance condition
w32~ 3wy, are considered.

When the lower mode is excited (A~ wy), there exists one type of response. It is the type of
response with a3>#0 and b3, #0, meaning interaction between two modes. Among at most five
such stable steady-state responses, one is a superposition of standing wave components and four
of them are superpositions of traveling wave components.



1026 W.K. Lee, M.H. Yeo | Journal of Sound and Vibration 263 (2003) 10171030

20 by (8= by =0)

a
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When the higher mode is excited (A~ w3;), there exist two types of response. One is the type of
response with a;; = 0 and b;; = 0, meaning no interaction between two modes. Among at most
five such stable steady-state responses, one is a standing wave and four of them are traveling
waves. The other is the type of response with a;; #0 or b;; #0, meaning interaction between two
modes. All of these responses with non-vanishing amplitudes of mode excited indirectly, however,
turn out to be unstable, which is a peculiar phenomenon.
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Appendix
Al Eq. (7)

The linear symmetric vibration modes ¢,,,(r) corresponding to the natural frequencies w,,, are
given by

Jn (M)
nm = KV!WZ Jn(nnmr) - = In(nnmr) * (A'l)
¢ [ In(rll’ln’l)
The «x,,, are chosen so that
1
/ rgp2,, dr = 1. (A.2)
0

The function J,, are Bessel function of the first kind of order n and the function I,, are modified
Bessel function of the first kind of order n. The 5, are the roots of L,(n)J,(n) — L,(n)J.(n) = 0.
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Fig. 6. Variations of the amplitudes (a;; = 0 and b;; = 0) with detuning parameter 6, when A~ w3, and ¢P3, = 15.

, stable; - --, unstable. Enlargements of the Z7, Z8 and Z9 in Fig. 5.

The natural frequencies w,,, are related to the eigenvalues 7,,, by the equation w? =n* + K.

¢7nm - ¢nma W_pym = Wpm and Afnm - Bnm-

A2. Eq (11):

Viewm = T(kl, kl,nm, —nm) + I'(kl, —nm, ki, nm) + I'(kl,nm, —nm, k),

o = Tl kem, ke, —kl) + T(kl, —kl, km, km) + T(kl, km, —kl, km),

(A.3)

(A4)
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where

I'(kl, cd,nm, pq) = Z G(nm, pq; ab)G(cd, ab; ki),

b=1

=k—c,

p=k—c—n,

(A.5)
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. 1
Gl pg:ab) = & [ Em. pardr,
0

1
Gled, ab; ki) = / r¢ E(ed, ab) dr,
0

— 1
E(VIWZ,PQ) _$(¢ZWZ - ¢:m> (d{i)q - %> - Z(¢;m¢;q)/

r

1
+ ﬁ(pzd):l/mqqu + nzqsqu)nm):

" 2 " 2
E(cd, ab) = Pea <¢;b — a?pab> + lp:,, (cbcd .- %z)

r n
2 / 1 / 1
+ %(lpab - ;%b) <¢cd — 4’cd>

lpab = ’zab[Ja(iabr) - EabIa(éabr)]-

1
/ rlpib dr=1,
0

s, la@t DOv+1) - apVa(Eap) = Ean(v + DIas1(En)
[aa + DO+ 1) + &) — Ea( + Dl 1(Eap)

and the &, are the roots of

and

The &, are chosen so that

a*(a+ D + DHa(Cw) — Eapla(Cup)] — @Ep(v + DTac1(Eap) — apla—1(Eap)]

+ all[TuEap) + Eapla(Cap)] — EplTam1(Eap) + Capla—1(Eap)] = 0.

A.3. Eq. (14):
Ovy = I'(NM,CD, CD, CD),
Ocp =I'(CD,—CD,—CD,NM) + I'(CD,—CD,NM,—CD)
+I'(CD,NM,—CD,—CD).
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