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Abstract

In order to investigate the non-linear asymmetric vibrations of a clamped circular plate on an elastic
foundation, the primary resonances of a plate with an internal resonance, in which the natural frequencies
of two asymmetric modes are commensurable are considered. The response is expressed as an expansion in
terms of the linear, free oscillation modes, and its amplitude is considered to be small but finite. The method
of multiple scales is used to reduce the non-linear governing equations to a system of autonomous ordinary
differential equations for amplitude and phase variables. For a numerical example the case of internal
resonance (a commensurable relationship between natural frequencies), o32E3o11; where the first subscript
refers to the number of nodal diameters and the second subscript the number of nodal circles including
boundary is considered. When the frequency of excitation is near o11; there exist at most five stable steady-
state responses. Four of them are superpositions of traveling wave components and one is a superposition
of standing wave components. The result shows the interaction between modes corresponding to o11 and
o32 by showing non-vanishing amplitudes of the mode not directly excited. When the frequency of
excitation is near o32; similarly the interaction between modes is shown to exist. All of the responses with
non-vanishing amplitudes of modes excited indirectly, however, turn out to be unstable, which is a peculiar
phenomenon.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Among many studies [1–5] dealing with non-linear modal interactions of vibrations of circular
plates, the work done by Sridhar et al. [2] may be said to be general in the sense that it includes
asymmetric vibrations as well as symmetric vibrations, and it includes all of the natural modes. In
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this work they derived solvability conditions for modal interactions of clamped circular plates.
Recently, Yeo and Lee [6] found that these conditions were misderived, and then corrected the
conditions. They observed that in the absence of internal resonance, the steady-state response can
have not only the form of a standing wave but also the form of a traveling wave. This observation
is a remarkable contrast to Sridhar et al. [2], in which the steady-state response can only have the
form of a standing wave.
In order to investigate modal interactions of circular plates with internal resonance, a circular

plate on an elastic foundation shown in Fig. 1 is considered. In this study, the elastic foundation is
considered to get a varied natural characteristic, which generates a desired commensurable
relation between natural frequencies. Circular plates on an elastic foundation are also known to
model some heat exchangers [7]. The dynamic analogue of von Karman equations is used to study
a primary resonance of the plate. The method of multiple scales is used to reduce the non-linear
governing equations to a system of autonomous ordinary differential equations for amplitude and
phase variables. The equilibrium solutions of the system and their stability are examined.

2. Equations of motion and steady-state responses

The equations governing the free, undamped oscillations of non-uniform circular plates
were derived by Efstathiades [8]. These equations are simplified to fit the special case of
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Fig. 1. A schematic diagram of a clamped circular plate on an elastic foundation.
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uniform plates, and damping and forcing terms are added. Then the non-dimensionalized
equations of motion of a circular plate with an elastic foundation shown in Fig. 1 can be given as
follows [2,9]:

@2w

@t2
þ ð=4 þ KÞw ¼ e Lðw;F Þ � 2c

@w

@t
þ p�ðr; y; tÞ

� �
; ð1Þ

=4F ¼
1

r

@2w

@r@y
�

1

r2
@w

@y

� �2

�
@2w

@r2
1

r

@w

@r
þ

1

r2
@2w

@y2

� �
; ð2Þ

where

Lðw;F Þ ¼
@2w

@r2
1

r

@F

@r
þ

1

r2
@2F

@y2

� �
þ

@2F

@r2
1

r

@w

@y
þ

1

r2
@2w

@y2

� �

� 2
1

r

@2F

@r@y
�

1

r2
@F

@y

� �
1

r

@2w

@r@y
�

1

r2
@w

@y

� �
; ð3Þ

where e ¼ 12ð1� n2Þh2=R2; c is the damping coefficient, p� is the forcing function, K is the stiffness
of the foundation, n is Poisson’s ratio, h is the thickness, R is the radius, w is the deflection of the
middle surface, F is the force function which satisfies the in-plane equilibrium conditions (in-plane
inertia is neglected), and
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The boundary conditions are developed for plates which are clamped along a circular edge. For
all t and y;
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In addition, it is necessary to require the solution to be bounded at r ¼ 0:
The forcing function p� is considered as follows:

p�ðr; y; tÞ ¼
XN
m¼1

P0mf0m þ 2
XN

n;m¼1

Pnmfnm cosðnyþ tnmÞ

" #
cos lt; ð7Þ

where the linear symmetric vibration modes fnmðrÞ corresponding to the natural frequencies onm

(see appendix). In these expressions, the first subscript n refers to the number of nodal diameters
and the second subscript m refers to the number of nodal circles including boundary. And l is the
excitation frequency.
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To obtain the first order approximate solution of Eqs. (1)–(6), the method of multiple scales is
used. w and F are expanded as follows:

wðr; y; t; eÞ ¼
XN
j¼0

ejwjðr; y;T0;T1;yÞ; ð8Þ

F ðr; y; t; eÞ ¼
XN
j¼0

ejFjðr; y;T0;T1;yÞ; ð9Þ

where Tn ¼ ent:
Following Sridhar et al. [2], the first order solution is as follows:

w0 ¼
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where the onm are linear natural frequencies, the fnmðrÞ are linear symmetric vibration modes (see
appendix), and the responses Anm and Bnm are complex functions of the all Tk for kX1:
For a circular plate without an elastic foundation—i.e. the case of K ¼ 0; Yeo and Lee [6] had

corrected the solvability conditions for the responses derived by Sridhar et al. [2]. Since the value
of K does not change the solvability conditions at all, Yeo and Lee [6] gives the conditions as
follows:
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where D1 ¼ @=@T1; dk0 are Kronecker delta, RA;B
kl are terms due to internal resonances, if any,

NA;B
kl are terms due to the external excitation, if any, and gklnm and #gklkm are constants given in the

appendix.
In order to consider the internal resonance condition oNME3oCD (N ¼ 3C) and the external

resonance condition lEoGH (GH ¼ CD or NM), the detuning parameters, s1 and s2; are
introduced as follows:

oNM ¼ 3oCD þ es1; l ¼ oGH þ es2: ð12; 13Þ

In this case

RA
NM ¼ QNMA3

CDe
�is1T1 ; RB

NM ¼ QNM %B3
CDe

is1T1 ; ð14a;bÞ

RA
CD ¼ QCD %A2

CDANMeis1T1 ; RB
CD ¼ QCDB2

CD
%BNMe�is1T1 ; ð14c;dÞ
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RA;B
kl ¼ 0 for klaCD;NM; ð14eÞ
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where the QNM and QCD are constants given in the appendix. Next let
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2
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where the anm; bnm; anm and bnm are real functions of T1: Substituting Eqs. (14)–(16) into (11) and
separating the result into real and imaginary parts, gives
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where
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2
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ma
GH ¼ s2T1 þ tGH � aGH ; mb

GH ¼ s2T1 � tGH � bGH ; ð19a;bÞ

*mA ¼ s1T1 � 3aCD þ aNM ; *mB ¼ s1T1 � 3bCD þ bNM : ð19c;dÞ

Each equilibrium solution of the system of autonomous ordinary differential equations to be
obtained from system (17) corresponds to a steady-state response. The steady-state response to
the first order approximation is given as follows:

w ¼ wCD þ wNM þ OðeÞ; ð20Þ
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where

wCD ¼ dGCdHDfCDfaCD cosðlt � ma
CD þ Cyþ tCDÞ
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wNM ¼ dGCdHDfNMfaNM cosð3lt � 3ma
CD þ *mA þ Nyþ 3tCDÞ

þ bNM cosð3lt � 3mb
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Each of the wCD and wNM is the superposition of two traveling wave components. If aCD ¼ bCD;
one obtains aNM ¼ bNM ; ma

CD ¼ mb
CD; m

a
NM ¼ mb

NM and *mA ¼ *mB: Then Eqs. (21) and (22) can be
reduced as follows:
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wNM ¼ 2dGCdHDfNMaNM cosð3lt � 3ma
CD þ *mAÞcosðNyþ 3tCDÞ

þ 2dGNdHMfNMaNM cosðlt � ma
NMÞcosðNyþ tNMÞ: ð24Þ

Now each of the wCD and wNM becomes a superposition of two standing wave components.

3. Numerical example

For a numerical example the case of K ¼ 1032; which gives natural frequencies o11 ¼ 38:52
and o32 ¼ 115:58 is considered. Then there is an internal resonance condition o32E3o11

and an internal detuning parameter es1 ¼ 0:007412: Pursuing the internal resonance
condition oNME3oCD ðN ¼ 3CÞ; gives the relations C ¼ 1; D ¼ 1; N ¼ 3 and M ¼ 2:
Consider two primary resonance cases, lEo11 (G ¼ 1 and H ¼ 1) and lEo32 (G ¼ 3
and H ¼ 2). In Figs. 2–7 the amplitudes a11; b11; a32 and b32 are plotted as functions of
detuning parameter es2 ¼ #s2 when {n; e; ec; t11; t32}={1

3
; 0.001067, 0.01, 0.0, 0.0}. Solid

and dotted lines denote, respectively, stable and unstable responses. The abbreviations SS, US, ST
and UT denote, respectively, stable standing, unstable standing, stable traveling and unstable
traveling wave components. Numerical results were verified by using a software package AUTO
[10], which can perform bifurcation analysis and continuation of solutions for ordinary
differential equations.
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In the case of lEo11 (G ¼ 1 and H ¼ 1), Fig. 2(a) and its partial enlargements, Fig. 3 show
that the response curve corresponding to standing waves is similar to the response curve of the
Duffing oscillator, except that the upper branch changes its stability at pitchfork bifurcation
points, #sAð0:0219Þ and #sGð0:2144Þ: Fig. 2(b) and its partial enlargements, Fig. 4 shows that the
mode corresponding to o32 is excited indirectly through the non-linear interaction. If there were
no non-linear interaction, a32 and b32 would be zero. Figs. 3 and 4 show that traveling wave
components change their stability at Hopf bifurcation points, #sDð0:0678Þ and #sF ð0:2099Þ: These
figures show that the response curves have four saddle-node bifurcation points, #sBð0:0512Þ;
#sCð0:0665Þ; #sEð0:0755Þ and #sHð0:2162Þ: When #sCo #s2o #sD; there exist five stable steady-state
responses. Those are from SS2, ST1, ST2, ST3 and ST4. Since the overall deflection of the plate is a
superposition of two wave components, respectively, due to modes excited directly (o11) and
indirectly (o23), it will be one of five superpositions (one superposition of standing wave
components and four superpositions of traveling wave components). The initial condition
determines which deflection is to be realized.
In the case of lEo32 (G ¼ 3 and H ¼ 2), Fig. 5 and its partial enlargements, Fig. 6 show

responses of the directly excited mode, with response of a11 ¼ 0 and b11 ¼ 0; which means no
interaction between two modes. The responses are similar with those [6] in the absence of internal
resonance. The enlargements were not plotted in the previous work [6], though. The response
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curves in Figs. 5 and 6 are analogous to the response curves in Figs. 2(a) and 3. Fig. 7 shows
that there exist additional steady-state responses, all of which turn out to be unstable. In
other words, no stable response with non-vanishing amplitudes of a mode excited indirectly
is found. It is believed that modal interaction via unstable responses is a peculiar phenomenon.
Non-existence of stable steady-state responses may imply the existence of quasi-periodic
response or chaos. Exploring the entity of unstable responses in Fig. 7, however, is beyond the
scope of this work.
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4. Conclusions

An analysis for non-linear interaction of asymmetric vibrations of a circular plate on an elastic
foundation has been presented. Two primary resonance cases with internal resonance condition
o32E3o11 are considered.
When the lower mode is excited (lEo11), there exists one type of response. It is the type of

response with a32a0 and b32a0; meaning interaction between two modes. Among at most five
such stable steady-state responses, one is a superposition of standing wave components and four
of them are superpositions of traveling wave components.
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When the higher mode is excited (lEo32), there exist two types of response. One is the type of
response with a11 ¼ 0 and b11 ¼ 0; meaning no interaction between two modes. Among at most
five such stable steady-state responses, one is a standing wave and four of them are traveling
waves. The other is the type of response with a11a0 or b11a0; meaning interaction between two
modes. All of these responses with non-vanishing amplitudes of mode excited indirectly, however,
turn out to be unstable, which is a peculiar phenomenon.
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Appendix

A.1. Eq. (7)

The linear symmetric vibration modes fnmðrÞ corresponding to the natural frequencies onm are
given by

fnm ¼ knm JnðZnmrÞ �
JnðZnmÞ
InðZnmÞ

InðZnmrÞ
� �

: ðA:1Þ

The knm are chosen so that Z 1

0

rf2
nm dr ¼ 1: ðA:2Þ

The function Jn are Bessel function of the first kind of order n and the function In are modified
Bessel function of the first kind of order n. The Znm are the roots of InðZÞJ
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The natural frequencies onm are related to the eigenvalues Znm by the equation o2
nm ¼ Z4nm þ K :

f�nm ¼ fnm; o�nm ¼ onm and A�nm ¼ Bnm:

A.2. Eq. (11):

gklnm ¼ Gðkl; kl; nm;�nmÞ þ Gðkl;�nm; kl; nmÞ þ Gðkl; nm;�nm; klÞ; ðA:3Þ

#gklkm ¼ Gðkl; km; km;�klÞ þ Gðkl;�kl; km; kmÞ þ Gðkl; km;�kl; kmÞ; ðA:4Þ
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where

Gðkl; cd; nm; pqÞ ¼
XN
b¼1

Gðnm; pq; abÞ #Gðcd; ab; klÞ; ðA:5Þ
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Gðnm; pq; abÞ ¼ x�4ab
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#Gðcd; ab; klÞ ¼
Z 1

0

rfkl
KEðcd; abÞ dr; ðA:7Þ

Eðnm; pqÞ ¼
�np

r2
f0

nm �
fnm

r

� �
f0

pq �
fpq

r

� �
�

1

2r
ðf0

nmf
0
pqÞ

0

þ
1

2r2
ðp2f00

nmfpq þ n2f00
pqfnmÞ; ðA:8Þ

KEðcd; abÞ ¼
f00

cd

r
c

0

ab �
a2

r
cab

� �
þ

c00
ab

r
f

0

cd �
c2

r
fcd

� �

þ
2ac

r2
c

0

ab �
1

r
cab

� �
f

0

cd �
1

r
fcd

� �
ðA:9Þ

and
cab ¼ *kab½JaðxabrÞ � *cabIaðxabrÞ�: ðA:10Þ

The *kab are chosen so that Z 1

0

rc2
ab dr ¼ 1; ðA:11Þ

*cab ¼
½aða þ 1Þðnþ 1Þ � x2ab�JaðxabÞ � xabðnþ 1ÞJa�1ðxabÞ

½aða þ 1Þðnþ 1Þ þ x2ab�IaðxabÞ � xabðnþ 1ÞIa�1ðxabÞ
ðA:12Þ

and the xab are the roots of

a2ða þ 1Þðnþ 1Þ½JaðxabÞ � *cabIaðxabÞ� � a2xabðnþ 1Þ½Ja�1ðxabÞ � *cabIa�1ðxabÞ�

þ ax2ab½JaðxabÞ þ *cabIaðxabÞ� � x3ab½Ja�1ðxabÞ þ *cabIa�1ðxabÞ� ¼ 0: ðA:13Þ

A.3. Eq. (14):

QNM ¼ GðNM;CD;CD;CDÞ; ðA:14Þ

QCD ¼GðCD;�CD;�CD;NMÞ þ GðCD;�CD;NM;�CDÞ

þ GðCD;NM;�CD;�CDÞ: ðA:15Þ
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